Repunit: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Primi repunit: "primi" nel senso di numeri primi
FrescoBot (discussione | contributi)
Riga 9:
La sequenza dei repunit è [[1 (numero)|1]], [[11 (numero)|11]], [[111 (numero)|111]], 1111, 11111, ... (sequenza [[OEIS:A002275|A002275]] dell'[[On-Line Encyclopedia of Integer Sequences|OEIS]]).
 
== Generalizzazione ==
La definizione di repunit è un concetto che dipende dalla [[base (aritmetica)|base]] in cui il numero viene espresso; si pensi che ogni numero intero N può essere riscritto come 11 (''uno-uno'') se espresso in base N-1, ciò per un semplice motivo: un numero in un [[sistema posizionale]] può essere rappresentato con una [[serie geometrica]] di ragione la base di numerazione '''b''':
 
Riga 29:
:<math>R_n^{(b)}={b^n-1\over b-1}.</math>
 
Dove R sta per la rappresentazione in forma di repunit di un generico numero N in base B e con ''n'' cifre 1.<ref>Intuitivamente la formula può anche essere spiegata così: ogni repunit è immancabilmente anche un [[divisore]] di altri [[numero a cifra ripetuta|numeri a cifra ripetuta]], ivi compreso quello corrispondente alla cifra a<sup>b-1</sup>, e siccome tale numero è anche l'[[antecedente (matematica)|antecedente]] di un multiplo di b<sup>n</sup>, tale multiplo meno [[1 (numero)|uno]] e diviso a<sup>b-1</sup>, cioè b -1, non può che essere un repunit di ''n'' cifre</ref> ad esempio:
 
:<math>R_3^{(5)}={5^3-1\over 5-1} = 31</math>
Riga 73:
 
* [[Numero a cifra ripetuta]] (repdigit)
* [[Repunit (fattori)|Tabella dei fattori]]
* [[11111 Repunit]] - [[asteroide]] scoperto nel [[1995]]
* [[Palindromi]]