Content deleted Content added
m Filled in 1 bare reference(s) with reFill () |
Added tags to the page using Page Curation (refimprove, more footnotes, one source) |
||
Line 1:
{{Multiple issues|{{refimprove|date=May 2015}}{{more footnotes|date=May 2015}}{{one source|date=May 2015}}}}
In algebra, a '''minimal generating set''' of a [[module (mathematics)|module]] over a [[ring (mathematics)|ring]] ''R'' is a [[generator (mathematics)|generating set]] of the module such that no proper subset of the set generates the module. If ''R'' is a [[field (mathematics)|field]], then it is the same thing as a [[basis (linear algebra)|basis]]. Unless the module is [[finitely-generated module|finitely-generated]], there may exist no minimal generating set.<ref>{{cite web|url=http://mathoverflow.net/questions/33540/existence-of-a-minimal-generating-set-of-a-module|title=ac.commutative algebra - Existence of a minimal generating set of a module - MathOverflow|work=mathoverflow.net}}</ref>
|