Schur-convex function: Difference between revisions

Content deleted Content added
Ncsinger (talk | contribs)
Added more information for Schur-Ostrowski criterion
Line 4:
A function <math>f</math> is 'Schur-concave' if its negative,<math>-f</math>, is Schur-convex.
 
==A simpleSchur-Ostrowski criterion==
 
If <math>f</math> is Schur-convexsymmetric and all first partial derivatives exist, then the following holds, where <math> f_{(i)}(x) </math> denotes the partial derivative with respect to <math> x_i </math>:
<math>f</math> is Schur-convex if and only if
:<math> (x_1 - x_2)(f_{(1)}(x) - f_{(2)}(x)) \ge 0
 
</math> for all <math> x </math>. Since <math> f </math> is a symmetric function, the above condition implies all the similar conditions for the remaining indexes!
<math>(x_i - x_j)(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
holds for all 1≤''i''≠''j''≤''d''.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
 
== Examples ==
Line 28 ⟶ 31:
 
* The [[Gini coefficient]] is strictly Schur concave.
 
== References ==
{{Reflist}}
 
==See also==