Subadditive set function: Difference between revisions

Content deleted Content added
better explains property and removes math mode
Definition: cleans formal definition
Line 2:
 
== Definition ==
IfLet <math>\Omega</math> isbe a [[set (mathematics)|set]], a subadditive function is a set functionand <math>f: \colon 2^{\Omega} \rightarrow \mathbb{R}</math> be a [[set function]], where <math>2^\Omega</math> denotes the [[Power set#Representing subsets as functions|power set]] of <math>\Omega</math>. The function ''f'' is ''subadditive'' if for each subset <math>S</math> and <math>T</math> of <math>\Omega</math>, whichwe satisfieshave the<math>f(S) following+ inequalityf(T) \geq f(S \cup T)</math>.<ref name="UF" /><ref name="DNS" />
 
For every <math>S, T \subseteq \Omega</math> we have that <math>f(S)+f(T)\geq f(S\cup T)</math>.
 
== Examples of subadditive functions ==