Content deleted Content added
→Asymptotic analysis: typo correction |
m Journal cites, using AWB (11335) |
||
Line 24:
* {{nowrap|''K''<sub>'''H'''</sub>('''x''') {{=}} {{!}}'''H'''{{!}}<sup>−1/2</sup> ''K''('''H'''<sup>−1/2</sup>'''x''')}}.
The choice of the kernel function ''K'' is not crucial to the accuracy of kernel density estimators, so we use the standard [[multivariate normal distribution|multivariate normal]] kernel throughout: {{nowrap|''K''('''x''') {{=}} (2''π'')<sup>−''d''/2</sup> exp(−{{frac|2}}'''x'''<sup>''T''</sup>'''x''')}}. On the other hand, the choice of the bandwidth matrix <strong>H</strong> is the single most important factor affecting its accuracy since it controls the amount and orientation of smoothing induced.<ref name="WJ1995">{{Cite book| author1=Wand, M.P | author2=Jones, M.C. | title=Kernel Smoothing | publisher=Chapman & Hall/CRC | ___location=London | year=1995 | isbn = 0-412-55270-1}}</ref>{{rp|36–39}} That the bandwidth matrix also induces an orientation is a basic difference between multivariate kernel density estimation from its univariate analogue since orientation is not defined for 1D kernels. This leads to the choice of the parametrisation of this bandwidth matrix. The three main parametrisation classes (in increasing order of complexity) are ''S'', the class of positive scalars times the identity matrix; ''D'', diagonal matrices with positive entries on the main diagonal; and ''F'', symmetric positive definite matrices. The ''S'' class kernels have the same amount of smoothing applied in all coordinate directions, ''D'' kernels allow different amounts of smoothing in each of the coordinates, and ''F'' kernels allow arbitrary amounts and orientation of the smoothing. Historically ''S'' and ''D'' kernels are the most widespread due to computational reasons, but research indicates that important gains in accuracy can be obtained using the more general ''F'' class kernels.<ref>{{cite journal | author1=Wand, M.P. | author2=Jones, M.C. | title=Comparison of smoothing parameterizations in bivariate kernel density estimation | journal=Journal of the American Statistical Association | year=1993 | volume=88 | pages=520–528
[[File:Kernel parametrisation class.png|thumb|center|500px|alt=Comparison of the three main bandwidth matrix parametrisation classes. Left. S positive scalar times the identity matrix. Centre. D diagonal matrix with positive entries on the main diagonal. Right. F symmetric positive definite matrix.|Comparison of the three main bandwidth matrix parametrisation classes. Left. ''S'' positive scalar times the identity matrix. Centre. ''D'' diagonal matrix with positive entries on the main diagonal. Right. ''F'' symmetric positive definite matrix.]]
Line 105:
[[File:Old Faithful Geyser KDE with plugin bandwidth.png|thumb|250px|alt=Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.|Old Faithful Geyser data kernel density estimate with plug-in bandwidth matrix.]]
The [http://cran.r-project.org/web/packages/ks/index.html ks package]<ref>{{Cite journal| author1=Duong, T. | title=ks: Kernel density estimation and kernel discriminant analysis in R | journal=Journal of Statistical Software | year=2007 | volume=21
272 records with two measurements each: the duration time of an eruption (minutes) and the
waiting time until the next eruption (minutes) of the [[Old Faithful Geyser]] in Yellowstone National Park, USA.
Line 216:
The KL can be estimated using a cross-validation method, although KL cross-validation selectors can be sub-optimal even if it remains [[Consistent estimator|consistent]] for bounded density functions.<ref>{{cite journal | author=Hall, P. | title=On Kullback-Leibler loss and density estimation | journal=Annals of Statistics | volume=15 | year=1989 | pages=589–605 | doi=10.1214/aos/1176350606}}</ref> MH selectors have been briefly examined in the literature.<ref>{{cite journal | author1=Ahmad, I.A. | author2=Mugdadi, A.R. | title=Weighted Hellinger distance as an error criterion for bandwidth selection in kernel estimation | journal=Journal of Nonparametric Statistics | volume=18 | year=2006 | pages=215–226 | doi=10.1080/10485250600712008}}</ref>
All these optimality criteria are distance based measures, and do not always correspond to more intuitive notions of closeness, so more visual criteria have been developed in response to this concern.<ref>{{cite journal | author1=Marron, J.S. | author2=Tsybakov, A. | title=Visual error criteria for qualitative smoothing | journal = Journal of the American Statistical Association | year=1996 | volume=90 | pages=499–507 |
==See also==
|