Average order of an arithmetic function: Difference between revisions

Content deleted Content added
Line 119:
\sum_{n\le x}\sigma_{\alpha}(n)=
\begin{cases}
\;\;\sum_{n\le x}\sigma_{\alpha}(n)=\frac{\zeta(\alpha+1)}{\alpha+1}x^{\alpha+1}+O(x^{\beta}) & \text{if } \alpha>0, \\
\;\;\sum_{n\le x}\sigma_{-1}(n)=\zeta(2)x+O(logx\log x) & \text{if } \alpha=-1, \\
\;\;\sum_{n\le x}\sigma_{\alpha}(n)=\zeta(-\alpha+1)x+O(x^{\max(0,1+\alpha)}) & \text{otherwise.}
\end{cases}
</math>