Content deleted Content added
=>Cite journal, web |
sp |
||
Line 28:
Since <math>G\,</math> is a bipartite graph, we may consider its <math>n \times m\,</math> adjacency matrix. Then the linear code <math>C\,</math> generated by viewing the transpose of this matrix as a parity check matrix is an expander code.
It has been shown that nontrivial lossless expander graphs exist. Moreover, we can explicitly construct them.<ref name="lossless">{{cite book |first1=M. |last1=Capalbo |first2=O. |last2=Reingold |first3=S. |last3=Vadhan |first4=A. |last4=Wigderson |chapter=Randomness conductors and constant-degree lossless expanders |chapterurl=http://dl.acm.org/citation.cfm?id=510003 |editor= |title=STOC '02 Proceedings of the
==Rate==
|