Matrix analysis: Difference between revisions

Content deleted Content added
Airwoz (talk | contribs)
m link, ce etc.
Line 115:
For all matrices '''A''' and '''B''' in ''M''<sub>''mn''</sub>(''F''), and all numbers ''α'' in ''F'', a matrix norm, delimited by double vertical bars || ... ||, fulfills:<ref group="note">Some authors, e.g. Horn and Johnson, use triple vertical bars instead of double: |||'''A'''|||.</ref>
 
*[[Nonnegative]]:
::<math>\| \mathbf{A} \| \ge 0</math>
:with equality only for '''A''' = '''0''', the [[zero matrix]].
*[[Scalar multiplication]]:
::<math>\|\alpha \mathbf{A}\|=|\alpha| \|\mathbf{A}\|</math>
*The [[triangular inequality]]:
::<math>\|\mathbf{A}+\mathbf{B}\| \leq \|\mathbf{A}\|+\|\mathbf{B}\|</math>
Line 131:
It is defined for matrices of any dimension (i.e. no restriction to square matrices).
 
==Positive definite and semidefinite matrices ==
 
{{main|Positive definite matrix}}
Line 141:
Matrix elements are not restricted to constant numbers, they can be [[mathematical variable]]s.
 
===Functions of matrices ===
 
A functions of a matrix takes in a matrix, and return something else (a number, vector, matrix, etc...).
 
===Matrix-valued functions ===
 
A matrix valued function takes in something (a number, vector, matrix, etc...) and returns a matrix.
Line 191:
*{{cite book|title=Matrix Analysis and Applied Linear Algebra Book and Solutions Manual|author=C. Meyer|year=2000 |publisher=SIAM|isbn=089-871-454-0|volume=2|series=Matrix Analysis and Applied Linear Algebra|url=http://books.google.co.uk/books?id=Zg4M0iFlbGcC&printsec=frontcover&dq=Matrix+Analysis&hl=en&sa=X&ei=SCd1UryWD_LG7Aag_4HwBg&ved=0CGoQ6AEwCQ#v=onepage&q=Matrix%20Analysis&f=false}}
 
*{{cite book|title=Applied Linear Algebra and Matrix Analysis|author=T. S. Shores|year=2007|publisher=Springer|isbn=038-733-195-6|series=[[Undergraduate Texts in Mathematics]]|url=http://books.google.co.uk/books?id=8qwTb9P-iW8C&printsec=frontcover&dq=Matrix+Analysis&hl=en&sa=X&ei=SCd1UryWD_LG7Aag_4HwBg&ved=0CGQQ6AEwCA#v=onepage&q=Matrix%20Analysis&f=false}}
 
*{{cite book|title=Matrix Analysis|author=Rajendra Bhatia|year=1997|volume=169|series=Matrix Analysis Series|publisher=Springer|isbn=038-794-846-5|url=http://books.google.co.uk/books?id=F4hRy1F1M6QC&printsec=frontcover&dq=matrix+analysis&hl=en&sa=X&ei=_SR1UpbnNarA7AaPjIHIDA&redir_esc=y#v=onepage&q=matrix%20analysis&f=false}}