Average order of an arithmetic function: Difference between revisions

Content deleted Content added
Using the {{math}} template.
borked tag using AWB (11377)
Line 261:
: <math>q^n \text{Ave}_n\sigma_{k}=q^{n(k+1)}(\frac{1-q^{-k(n+1)}}{1-q^{-k}})=q^{n(k+1)}(\frac{\zeta(k+1)}{\zeta(kn+k+1)})</math>
 
Thus, if we set <math>x=q^n</math> then the above result reads
 
: <math>\sum_{\deg(m)=n, m \text{ monic}} \sigma_k(m)=x^{k+1}(\frac{\zeta(k+1)}{\zeta(kn+k+1)})</math>