Rectangular function: Difference between revisions

Content deleted Content added
m add newline
Rabbanis (talk | contribs)
changed time-___domain variable "x" to "t" (both were being used); added triangular function reference; made minor stylistic changes
Line 1:
[[Image:Rectangular function.svg|thumb|right|Rectangular function]]
 
The '''rectangular function''' (also known as the '''rectangle function''', '''rect function''' or the normalized '''[[boxcar function]]''') is defined as,
 
:<math>\mathrm{rect}(xt) = \sqcap(xt) = \begin{cases}
0 & \mbox{if } |xt| > \frac{1}{2} \\[3pt]
\frac{1}{2} & \mbox{if } |xt| = \frac{1}{2} \\[3pt]
1 & \mbox{if } |xt| < \frac{1}{2}
\end{cases} </math>
 
Alternate definitions of the function define <math>\mathrm{rect}(\pm 1/2)</math> to be 0, 1, or undefined. We can also express the rectangular function in terms of the [[Heaviside step function]], ''<math>u(t)''</math>:
 
:<math>\mathrm{rect}(xt) = u \left( xt + \frac{1}{2} \right) - u \left( xt - \frac{1}{2} \right) </math>
 
or, alternatively:
 
:<math>\mathrm{rect}(xt) = u \left( xt + \frac{1}{2} \right) \cdot u \left( \frac{1}{2} - xt \right) </math>
 
The rectangular function is normalized:
 
:<math>\int_{-\infty}^\infty \mathrm{rect}(xt)\,dxdt=1</math>
 
The [[Continuous_Fourier_transform#Table_of_important_Fourier_transforms|unitary Fourier transforms]] of the rectangular function are''':''',
 
:<math>\frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty \mathrm{rect}(t)\cdot e^{-i \omega t} \, dt
=\frac{1}{\sqrt{2\pi}}\cdot \mathrm{sinc}\left(\frac{\omega}{2\pi}\right)</math>,
 
and, in terms of the normalized [[sinc function]]. ,
 
 
Line 31 ⟶ 32:
= \mathrm{sinc}(f)</math>
 
We can define the [[triangular function]] as the convolution of two rectangular functions:
 
:<math>\mathrm{tri}(t) = \mathrm{rect}(t) * \mathrm{rect}(t) </math>
 
Viewing the rectangular function as a [[probability distribution]] function, its [[characteristic function (probability theory)|characteristic function]] is therefore written,
 
:<math>\varphi(k) = \frac{\sin(k/2)}{k/2}\,</math>
 
and its [[moment generating function]] is:,
 
:<math>M(k)=\frac{\mathrm{sinh}(k/2)}{k/2}\,</math>
 
where "<math>\mathrm{sinh"}(t)</math> is the [[hyperbolic sine]] function.
 
==See also==