Transformation between distributions in time–frequency analysis: Difference between revisions
Content deleted Content added
No edit summary |
Cuzkatzimhut (talk | contribs) |
||
Line 10:
If we use the variable ''ω''=2''πf'', then, borrowing the notations used in the field of quantum mechanics, we can show that time–frequency representation, such as [[Wigner distribution function]] (WDF) and other [[bilinear time–frequency distribution]]s, can be expressed as
: <math>C(t,\omega) = \dfrac{1}{4\pi^2}\iiint s^*\left(u-\dfrac{1}{2}\tau\right)s\left(u+\dfrac{1}{2}\tau\right)\phi(\theta,\tau)e^{-j\theta t-j\tau\omega+j\theta u}\, du\,d\tau\,d\theta ,</math> (1)▼
▲: <math>C(t,\omega) = \dfrac{1}{4\pi^2}\iiint s^*\left(u-\dfrac{1}{2}\tau\right)s\left(u+\dfrac{1}{2}\tau\right)\phi(\theta,\tau)e^{-j\theta t-j\tau\omega+j\theta u}\, du\,d\tau\,d\theta ,</math> (1)
where <math>\phi(\theta,\tau)</math> is a two dimensional function called the kernel, which determines the distribution and its properties (for a signal processing terminology and treatment of this question, the reader is referred to the references already cited in the introduction).
==Characteristic function formulation==
|