Content deleted Content added
→The scattering matrix of an 2D TLM node: spelling |
|||
Line 30:
[[File:SeriesTlmNode.png|thumb|400px|right|A 2D series TLM node]]
If we consider an electromagnetic field distribution
: <math>\frac{\partial{H_z}}{\partial{y}} = \varepsilon\frac{\partial{E_x}}{\partial{t}}</math>
Line 42:
: <math>\frac{\partial^2H_z}{\partial{x}^2}+\frac{\partial^2{H_z}}{\partial{y}^2} = \mu\varepsilon\frac{\partial^2{H_z}}{\partial{t}^2}</math>
The figure on the right presents a structure
: <math>-V_1+V_2+V_3-V_4 = 2L'\,\Delta l\frac{\partial{I}}{\partial{t}}</math>
Line 60:
: <math>\frac{\Delta E_x}{\Delta y} - \frac{\Delta E_y}{\Delta x} = 2L'\frac{\partial H_z}{\partial t}</math>
This reduces to
Similarly, using the conditions across the
: <math>\frac{\partial{H_z}}{\partial{y}} = C'\frac{\partial{E_x}}{\partial{t}}</math>
Line 68:
: <math>-\frac{\partial{H_z}}{\partial{x}} = C'\frac{\partial{E_y}}{\partial{t}}</math>
Having these results, it is possible to compute the scattering matrix of a shunt node. The incident voltage pulse on port 1 at time-step ''k'' is denoted as <math>_kV^i_1</math>. Replacing the four line segments from the above figure with their [[Thevenin equivalent]] it is possible to show that the following equation for the reflected voltage pulse holds:
: <math>_kV^r_1 = 0.5\left(_kV^i_1 + _kV^i_2 + _kV^i_3 - _kV^i_4\right)</math>
If all incident waves
: <math>_k\mathbf{V}^r=\mathbf{S}_k\mathbf{V}^i</math>
|