Content deleted Content added
Line 31:
== Moore-Aronszajn theorem ==
Given a positive definite kernel
For all natural number <math>n</math>, for all <math>t_1, \ldots, t_n</math> in <math>T</math>, and for all <math>\alpha_1, \ldots, \alpha_n</math> in a real or complex,
:<math> \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j K(t_i, t_j) \ge 0.</math>
Now, for all <math>t</math> in <math>T</math> define the following functions as the first class citizens of <math>H</math>
:<math> \Phi(t) = K(\cdot, t). </math>
Let <math>H'</math> be the linear [[vector space]] [[linear span|spanned]] by the set <math>\{ \Phi(t) \}_{t \in T}</math>.
Finally we complete <math>H'</math> by including all the [[Cauchy sequence]]s of <math>H'</math>.
== See Also ==
|