Multidimensional DSP with GPU acceleration: Difference between revisions

Content deleted Content added
Sing0512 (talk | contribs)
No edit summary
Sing0512 (talk | contribs)
mNo edit summary
Line 1:
{{AFC submission|t||ts=20151031094109|u=Sing0512|ns=118}} <!--- Important, do not remove this line before article has been created. --->
 
[[Digital signal processing|Digital signal processing (DSP)]] is ana ubiquitous methodology in scientific and engineering computations. However, practically, to DSP problems are often not only 1-D. For instance, image data are 2-D signals and radar signals are 3-D signals. While the number of dimensions increases, the time and/or storage complexity of processing digital signal grows dramatically. Therefore, solving DSP problems in real-time is extremely difficult in reality.
 
Modern [[General-purpose computing on graphics processing units|general purpose graphics processing units (GPGPUs)]] are considered having excellent throughput on vector operations and numeric manipulations by high degree of parallel computation. While processing digital signals, particularly multidimensional signals, often involves in a series of vector operations on massive amount of independent data samples, GPGPUs are now widely employed to accelerate multidimensional DSP, such as [[image processing]], [[Video processing|video codec]], [[Radar signal characteristics|radar signal analysis]], [[sonar signal processing]], and [[Ultrasound scan|ultrasound scanning]]. Conceptually, using GPGPU devices to perform multidimensional DSP is able to dramatically reduce the computation complexity compared with [[Cpu|central processing units (CPUs)]], [[Digital signal processor|digital signal processors (DSPs)]], or other [[Field-programmable gate array|FPGA]] accelerators.