Content deleted Content added
No edit summary |
No edit summary |
||
Line 6:
<math>\{p\in M:\varphi(p)\le y\}</math> that contain at least one point at which the [[measuring function]] (a [[continuous function]] from a [[topological space]] <math>M\ </math> to <math>\mathbb{R}^k\ </math>
<ref name="FroLa99">Patrizio Frosini and Claudia Landi, ''Size Theory as a Topological Tool for Computer Vision'', Pattern Recognition And Image Analysis, 9(4):596–603, 1999.</ref>
<ref name="FroMu99">Patrizio Frosini
.<ref name="dAFrLa06">Michele d'Amico, Patrizio Frosini, Claudia Landi, ''Using matching distance in Size Theory: a survey'', International Journal of Imaging Systems and Technology, 16(5):154–161, 2006.</ref> The concept of size function can be easily extended to the case of a measuring function <math>\varphi:M\to \mathbb{R}^k</math>, where <math>\mathbb{R}^k</math> is endowed with the usual partial order
.<ref name="BiCeFr08">Silvia Biasotti, Andrea Cerri, Patrizio Frosini, Claudia Landi, ''Multidimensional size functions for shape comparison'', Journal of Mathematical Imaging and Vision 32:161–179, 2008.</ref>
|