Content deleted Content added
m Import from Planet Math |
format |
||
Line 1:
The '''scale convolution''' of two functions <math>s(t)</math> and <math>r(t)</math>, also known as their '''logarithmic convolution''' is defined as the function<br>
:<math> s *
when this quantity exists.
Line 10 ⟶ 8:
The logarithmic convolution can be related to the ordinary convolution by changing the variable from <math>t</math> to <math>v = \log t</math>:
: <math> s *
\int_{-\infty}^\infty s\left(\frac{t}{e^u}\right) r(e^u) du </math>
:<math> = \int_{-\infty}^\infty s\left(e^{\log t - u}\right)r(e^u) du.</math>
Define <math>f(v) = s(e^v)</math> and <math>g(v) = r(e^v)</math> and let <math>v = \log t</math>, then
:<
{{planetmath|id=5995|title=logarithmic convolution}}
|