Linear polarization: Difference between revisions

Content deleted Content added
m {{FS1037C}}
No edit summary
Line 2:
 
Historically, the orientation of a polarized electromagnetic wave has been defined in the optical regime by the orientation of the electric vector, and in the [[radio]] regime, by the orientation of the magnetic vector.
 
==Mathematical description of linear polarization==
The [[Classical physics | classical]] [[sinusoidal]] plane wave solution of the [[electromagnetic wave equation]] for the [[Electric field | electric]] and [[Magnetic field | magnetic]] fields is (cgs units)
:<math> \mathbf{E} ( \mathbf{r} , t ) = \mid \mathbf{E} \mid \mathrm{Re} \left \{ |\psi\rangle \exp \left [ i \left ( kz-\omega t \right ) \right ] \right \} </math>
 
:<math> \mathbf{B} ( \mathbf{r} , t ) = \hat { \mathbf{z} } \times \mathbf{E} ( \mathbf{r} , t ) </math>
 
for the magnetic field, where k is the [[wavenumber]],
 
:<math> \omega_{ }^{ } = c k</math>
 
is the [[angular frequency]] of the wave, and <math> c </math> is the [[speed of light]].
 
Here
 
:<math> \mid \mathbf{E} \mid </math>
 
is the [[amplitude]] of the field and
 
:<math> |\psi\rangle \equiv \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>
 
is the [[Jones vector]] in the x-y plane.
 
The wave is linearly polarized when the phase angles <math> \alpha_x^{ } , \alpha_y </math> are equal,
 
:<math> \alpha_x = \alpha_y \equiv \alpha </math>.
 
This represents a wave polarized at an angle <math> \theta </math> with respect to the x axis. In that case the Jones vector can be written
 
:<math> |\psi\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \exp \left ( i \alpha \right ) </math>.
 
The state vectors for linear polarization in x or y are special cases of this state vector.
 
If unit vectors are defined such that
 
:<math> |x\rangle \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} </math>
 
and
 
:<math> |y\rangle \equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} </math>
 
then the polarization state can written in the "x-y basis" as
 
:<math> |\psi\rangle = \cos\theta \exp \left ( i \alpha \right ) |x\rangle + \sin\theta \exp \left ( i \alpha \right ) |y\rangle = \psi_x |x\rangle + \psi_y |y\rangle </math>.
 
 
== See also ==