Elliptical polarization: Difference between revisions

Content deleted Content added
Line 37:
:<math> |\psi\rangle \equiv \begin{pmatrix} \psi_x \\ \psi_y \end{pmatrix} = \begin{pmatrix} \cos\theta \exp \left ( i \alpha_x \right ) \\ \sin\theta \exp \left ( i \alpha_y \right ) \end{pmatrix} </math>
 
is the [[Jones vector]] in the x-y plane. Here <math> \theta </math> is an angle that determines the tilt of the ellipse and <math> \alpha_x - \alpha_y </math> determines the aspect ratio of the ellipse. If <math> \alpha_x </math> and <math> \alpha_y </math> are equal the wave is [[linear polrization | linearly polarized]]. If they differ by <math> \pi/2 </math> they are [circular polarization | circularly polarized]].
 
==See also==