Content deleted Content added
m Qwertyus moved page Partial Likelihood Methods for Panel Data to Partial likelihood methods for panel data |
m WP:CHECKWIKI error fixes, added orphan tag using AWB (11754) |
||
Line 1:
{{Multiple issues|{{one source|date=November 2015}}{{sections|date=November 2015
{{Orphan|date=December 2015}}
}}
Partial (pooled) likelihood estimation for [[panel data]] assumes that density of ''y<sub>it</sub>'' given ''x<sub>it</sub>'' is correctly specified for each time period but it allows for misspecification in the conditional density of ''y<sub>i</sub>≔(y<sub>i1</sub>,…,y<sub>iT</sub>) given x<sub>i</sub>≔(x<sub>i1</sub>,…,x<sub>iT</sub>)''. Concretely, partial likelihood estimation uses the product of conditional densities as the density of the joint conditional distribution. This generality facilitates [[maximum likelihood]] methods in panel data setting because fully specifying conditional distribution of ''y<sub>i</sub>'' can be computationally demanding
In the following exposition, we follow the treatment in Wooldridge
Writing the conditional density of y<sub>it</sub> given ''x<sub>it</sub>'' as ''f<sub>t</sub>'' (''y<sub>it</sub>'' | ''x<sub>it</sub>'';θ), the partial maximum likelihood estimator solves:
Line 9 ⟶ 11:
: <math>
\underset{\theta\in\Theta}{\operatorname{max}}\sum_{i=1}^N\sum_{t=1}^T \log f_t(y_{it} \mid x_{it}; \theta) </math>
In this formulation, the joint conditional density of ''y<sub>i</sub>'' given ''x<sub>i</sub>'' is modeled as ''Π<sub>t</sub>'' ''f<sub>t</sub>'' (''y<sub>it</sub>'' | ''x<sub>it</sub>'' ; θ). We assume that ''f<sub>t</sub> (y<sub>it</sub> |x<sub>it</sub> ; θ)'' is correctly specified for each ''t'' = 1,…,''T'' and that there exists ''θ<sub>0</sub>'' ∈ Θ that uniquely maximizes ''E[f<sub>t</sub> (y<sub>it</sub>│x<sub>it</sub> ; θ)].
But, it is not assumed that the joint conditional density is correctly specified. Under some regularity conditions, partial MLE is consistent and asymptotically normal.
By the usual argument for M-estimator (details in Wooldridge <ref name= "Woolridge" />), the asymptotic variance of ''√N (θ<sub>MLE</sub>- θ<sub>0</sub>) is A<sup>
{{Reflist}}
{{
|