First-class constraint: Difference between revisions

Content deleted Content added
Line 13:
:<math> f_i(x)=0, </math>
for ''n'' smooth functions
 
:<math>\{ f_i \}_{i= 1}^n</math>
 
These will only be defined [[chart (topology)|chartwise]] in general. Suppose that everywhere on the constrained set, the ''n'' derivatives of the ''n'' functions are all [[linearly independent]] and also that the [[Poisson bracket]]s
 
:<math>\{f_i,f_j\}</math>
 
and
 
:<math>\{f_i,H\}</math>
all vanish on the constrained subspace.
 
all vanish on the constrained subspace. This means we can write
 
:<math>\{f_i,f_j\}=\sum_k c_{ij}^k f_k</math>
for some smooth functions <math>c_{ij}^k</math> −−there is a theorem showing this; and
 
for some smooth functions
 
:<math>c_{ij}^k</math>
 
(there is a theorem showing this) and
 
:<math>\{f_i,H\}=\sum_j v_i^j f_j</math>
for some smooth functions <math>v_i^j</math>.
 
for some smooth functions
 
:<math>v_i^j</math>.
 
This can be done globally, using a [[partition of unity]]. Then, we say we have an irreducible '''first-class constraint''' (''irreducible'' here is in a different sense from that used in [[representation theory]]).