Transformation between distributions in time–frequency analysis: Difference between revisions
Content deleted Content added
Cuzkatzimhut (talk | contribs) |
→Relation of the spectrogram to other bilinear representations: Fixed the prime and double prime notations (you don't need to use superscripts) |
||
Line 61:
==Relation of the spectrogram to other bilinear representations==
Now we specialize to the case where one transform from an arbitrary representation to the spectrogram. In Eq. (9), both <math>C_1</math> to be the spectrogram and <math>C_2</math> to be arbitrary are set. In addition, to simplify notation, <math>\phi_{SP} = \phi_1
: <math>C_{SP}(t,\omega) = \iint g_{SP} \left (t
The kernel for the spectrogram with window, <math>h(t)</math>, is <math>A_h(-\theta,\tau)</math> and therefore
: <math>\begin{
g_{SP}(t,\omega) & = \dfrac{1}{4\pi^2}\iint \dfrac{A_h(-\theta,\tau)}{\phi(\theta,\tau)}e^{j\theta t+j\tau\omega}\, d\theta\,d\tau \\
& = \dfrac{1}{4\pi^2}\iiint \dfrac{1}{\phi(\theta,\tau)}h^*(u-\
& = \dfrac{1}{4\pi^2}\iiint h^*(u-\
\end{
If
:
and therefore
for kernels that satisfy <math>\phi(-\theta,\tau)\phi(\theta,\tau) = 1</math>▼
: <math>C_{SP}(t,\omega) = \iint C_s(t
▲
▲: <math>C_{SP}(t,\omega) = \iint C_s(t^',\omega^')C_h(t^'-t,\omega^'-\omega)\,dt^'\,d\omega^'</math> (14)
: <math>C_{SP}(t,\omega) = \iiiint G(t
▲: <math>C_{SP}(t,\omega) = \iiiint G(t^{''},\omega^{''})C_s(t^',\omega^')C_h(t^{''}+t^'-t,-\omega^{''}+\omega-\omega^')\,dt^'\,dt^{''}\,d\omega^\,d\omega^{''}</math> (15)
where
: <math>G(t,\omega) = \dfrac{1}{4\pi^2}\iint \dfrac{e^{-j\theta t-j\tau\omega}}{\phi(\theta,\tau)\phi(-\theta,\tau)}\, d\theta\,d\tau</math>
==References==
|