Symbolic regression: Difference between revisions

Content deleted Content added
Added heuristic lab software to See also
m Difference from classical regression: The sentence was missing a word, and was not grammatically correct.
Line 9:
This approach has, of course, the disadvantage of having a much larger space to search — in fact, not only the search space in symbolic regression is infinite, but there are an infinite number of models which will perfectly fit a finite data set (provided that the model complexity isn't artificially limited). This means that it will possibly take a symbolic regression algorithm much longer to find an appropriate model and parametrization, than traditional regression techniques. This can be attenuated by limiting the set of building blocks provided to the algorithm, based on existing knowledge of the system that produced the data; but in the end, using symbolic regression is a decision that has to be balanced with how much is known about the underlying system.
 
Nevertheless, this characteristic of symbolic regression also has advantages: because the [[evolutionary algorithm]] requires diversity in order to effectively explore the search space, the end result is likely to be a selection of high-scoring models (and their corresponding set of parameters). Examining this collection could provide better insight into the underlying process, and allows the user to identify an approximation that better fits their needs in terms of accuracy and simplicity.
 
== See also ==