Additive function: Difference between revisions

Content deleted Content added
top: removing unrelated competing meaning, hatnote to Algebraic map
m Improved formatting (plaintext to LaTeX)
Line 2:
{{About||the [[Abstract algebra|algebra]]ic meaning|Additive map}}
 
In [[number theory]], an '''{{anchor|definition-additive_function-number_theory}}additive function''' is an [[arithmetic function]] ''<math>f''(''n'')</math> of the positive [[integer]] ''<math>n''</math> such that whenever ''<math>a''</math> and ''<math>b''</math> are [[coprime]], the function of the product is the sum of the functions:<ref name="Erdos1939">Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077746/ online]</ref>
:''<math>f''(''ab'') = ''f''(''a'') + ''f''(''b'')</math>.
 
== Completely additive ==
 
An additive function ''<math>f''(''n'')</math> is said to be '''completely additive''' if ''<math>f''(''ab'') = ''f''(''a'') + ''f''(''b'')</math> holds ''for all'' positive integers ''<math>a''</math> and ''<math>b''</math>, even when they are not co-prime. '''Totally additive''' is also used in this sense by analogy with [[totally multiplicative]] functions. If ''<math>f''</math> is a completely additive function then ''<math>f''(1) = 0</math>.
 
Every completely additive function is additive, but not vice versa.
Line 15:
Example of arithmetic functions which are completely additive are:
 
* The restriction of the [[logarithm|logarithmic function]] to '''<math>\mathbb{N'''}</math>.
 
* The '''multiplicity''' of a prime factor ''<math>p''</math> in ''<math>n''</math>, that is, the largest exponent ''<math>m'' \in \mathbb{N}</math> for which ''p<supmath>p^m | n</supmath>'' dividesis ''n''true.
 
* ''a''<sub>0</submath>a_0(''n'')</math> - the sum of primes dividing ''<math>n''</math>, counting multiplicity, sometimes called <math>\text{sopfr}(''n'')</math>, the potency of ''<math>n''</math> or the integer logarithm of ''<math>n''</math> {{OEIS|A001414}}. For example:
 
::''a''<sub>0</submath>a_0(4) = 2 + 2 = 4</math>
::''a''<sub>0</submath>a_0(20) = ''a''<sub>0</sub>a_0(2<sup>^2</sup> ·\cdot 5) = 2 + 2+ 5 = 9</math>
::''a''<sub>0</submath>a_0(27) = 3 + 3 + 3 = 9</math>
::''a''<sub>0</submath>a_0(144) = ''a''<sub>0</sub>a_0(2<sup>^4</sup> ·\cdot 3<sup>^2</sup>) = ''a''<sub>0</sub>a_0(2<sup>^4</sup>) + ''a''<sub>0</sub>a_0(3<sup>^2</sup>) = 8 + 6 = 14</math>
::''a''<sub>0</submath>a_0(2,000) = ''a''<sub>0</sub>a_0(2<sup>^4</sup> ·\cdot 5<sup>^3</sup>) = ''a''<sub>0</sub>a_0(2<sup>^4</sup>) + ''a''<sub>0</sub>a_0(5<sup>^3</sup>) = 8 + 15 = 23</math>
::''a''<sub>0</submath>a_0(2,003) = 20032,003</math>
::''a''<sub>0</submath>a_0(54,032,858,972,279) = 12406581,240,658</math>
::''a''<sub>0</submath>a_0(54,032,858,972,302) = 17804171,780,417</math>
::''a''<sub>0</submath>a_0(20,802,650,704,327,415) = 12406811,240,681</math>
 
* The [[prime factor#Omega functions|omega function]] Ω<math>\Omega(''n'')</math>, defined as the total number of [[prime factor#Omega functions|prime factors]] of ''<math>n''</math>, counting multiplemultiplicity. factorsIt multiple times,is sometimes called the "Big Omega function" {{OEIS|A001222}}. For example;
 
::Ω<math>\Omega(1) = 0</math>, since 1 has no prime factors
::Ω<math>\Omega(4) = 2</math>
::Ω<math>\Omega(16) = Ω\Omega(2· \cdot 2· \cdot 2· \cdot 2) = 4</math>
::Ω<math>\Omega(20) = Ω\Omega(2· \cdot 2· \cdot 5) = 3</math>
::Ω<math>\Omega(27) = Ω\Omega(3· \cdot 3· \cdot 3) = 3</math>
::Ω<math>\Omega(144) = Ω\Omega(2<sup>^4</sup> ·\cdot 3<sup>^2</sup>) = Ω\Omega(2<sup>^4</sup>) + Ω\Omega(3<sup>^2</sup>) = 4 + 2 = 6</math>
::Ω<math>\Omega(2,000) = Ω\Omega(2<sup>^4</sup> ·\cdot 5<sup>^3</sup>) = Ω\Omega(2<sup>^4</sup>) + Ω\Omega(5<sup>^3</sup>) = 4 + 3 = 7</math>
::Ω<math>\Omega(2,001) = 3</math>
::Ω<math>\Omega(2,002) = 4</math>
::Ω<math>\Omega(2,003) = 1</math>
::Ω<math>\Omega(54,032,858,972,279) = 3</math>
::Ω<math>\Omega(54,032,858,972032858972,302) = 6</math>
::Ω<math>\Omega(20,802,650,704,327,415) = 7</math>
 
Example of arithmetic functions which are additive but not completely additive are:
 
* ωThe other omega function, <math>\omega(''n'')</math>, defined as the total number of ''differentdistinct'' [[prime factor#Omega functions|prime factors]] of ''<math>n''</math> {{OEIS|A001221}}. For example:
 
::ω<math>\omega(4) = 1</math>
::ω<math>\omega(16) = ω\omega(2<sup>^4</sup>) = 1</math>
::ω<math>\omega(20) = ω\omega(2<sup>^2</sup> ·\cdot 5) = 2</math>
::ω<math>\omega(27) = ω\omega(3<sup>^3</sup>) = 1</math>
::ω<math>\omega(144) = ω\omega(2<sup>^4</sup> ·\cdot 3<sup>^2</sup>) = ω\omega(2<sup>^4</sup>) + ω\omega(3<sup>^2</sup>) = 1 + 1 = 2</math>
::ω<math>\omega(2,000) = ω\omega(2<sup>^4</sup> ·\cdot 5<sup>^3</sup>) = ω\omega(2<sup>^4</sup>) + ω\omega(5<sup>^3</sup>) = 1 + 1 = 2</math>
::ω<math>\omega(2,001) = 3</math>
::ω<math>\omega(2,002) = 4</math>
::ω<math>\omega(2,003) = 1</math>
::ω<math>\omega(54,032,858,972,279) = 3</math>
::ω<math>\omega(54,032,858,972,302) = 5</math>
::ω<math>\omega(20,802,650,704,327,415) = 5</math>
 
* ''a''<sub>1</submath>a_1(''n'')</math> - the sum of the distinct primes dividing ''<math>n''</math>, sometimes called <math>\text{sopf}(''n'')</math> {{OEIS|A008472}}. For example:
 
::''a''<sub>1</submath>a_1(1) = 0</math>
::''a''<sub>1</submath>a_1(4) = 2</math>
::''a''<sub>1</submath>a_1(20) = 2 + 5 = 7</math>
::''a''<sub>1</submath>a_1(27) = 3</math>
::''a''<sub>1</submath>a_1(144) = ''a''<sub>1</sub>a_1(2<sup>^4</sup> ·\cdot 3<sup>^2</sup>) = ''a''<sub>1</sub>a_1(2<sup>^4</sup>) + ''a''<sub>1</sub>a_1(3<sup>^2</sup>) = 2 + 3 = 5</math>
::''a''<sub>1</submath>a_1(2,000) = ''a''<sub>1</sub>a_1(2<sup>^4</sup> ·\cdot 5<sup>^3</sup>) = ''a''<sub>1</sub>a_1(2<sup>^4</sup>) + ''a''<sub>1</sub>a_1(5<sup>^3</sup>) = 2 + 5 = 7</math>
::''a''<sub>1</submath>a_1(2,001) = 55</math>
::''a''<sub>1</submath>a_1(2,002) = 33</math>
::''a''<sub>1</submath>a_1(2,003) = 2003</math>
::''a''<sub>1</submath>a_1(54,032,858,972,279) = 12386651,238,665</math>
::''a''<sub>1</submath>a_1(54,032,858,972,302) = 17804101,780,410</math>
::''a''<sub>1</submath>a_1(20,802,650,704,327,415) = 12386771,238,677</math>
 
== Multiplicative functions ==
 
From any additive function ''<math>f''(''n'')</math> it is easy to create a related [[multiplicative function]] ''<math>g''(''n'')</math> i.e. with the property that whenever ''<math>a''</math> and ''<math>b''</math> are coprime we have:
:''<math>g''(''ab'') = ''g''(''a'') ×\cdot ''g''(''b'')</math>.
One such example is ''<math>g''(''n'') = 2<sup>''^{f''(''n'')}</supmath>.
 
== See also ==