Faddeev–LeVerrier algorithm: Difference between revisions

Content deleted Content added
m Derivation: different symbol for Bells
Line 79:
 
The final solution might be more conveniently expressed in terms of complete exponential [[Bell polynomials]] as
:<math> c_{n-k} = \frac{(-1)^{n-k}}{k!} B_k{\cal B}_k \Bigl ( \operatorname{tr}A , -1! ~ \operatorname{tr}A^2, 2! ~\operatorname{tr}A^3, \ldots, (-1)^{k-1}(k-1)! ~ \operatorname{tr}A^k\Bigr ) .</math>
 
==An equivalent but distinct expression==