Backward Euler method: Difference between revisions

Content deleted Content added
Line 20:
== Derivation ==
 
Integrating the differential equation <math> \frac{\mathrm{d} y}{\mathrm{d} t} = f(t,y) </math> from <math> t_kt_n </math> to <math> t_{kn+1} = t_kt_n + h </math> yields
: <math> y(t_{kn+1}) - y(t_kt_n) = \int_{t_kt_n}^{t_{kn+1}} f(t, y(t)) \,\mathrm{d}t. </math>
Now approximate the integral on the right by the right-hand [[rectangle method]] (with one rectangle):
: <math> y(t_{kn+1}) - y(t_kt_n) \approx h f(t_{kn+1}, y(t_{kn+1})). </math>
Finally, use that <math> y_ky_n </math> is supposed to approximate <math> y(t_kt_n) </math> and the formula for the backward Euler method follows.<ref>{{harvnb|Butcher|2003|p=57}}</ref>
 
The same reasoning leads to the (standard) Euler method if the left-hand rectangle rule is used instead of the right-hand one.