Content deleted Content added
m →Asymptotic analysis: fix math italics |
m →Optimal bandwidth matrix selection: fix math italics |
||
Line 50:
: <math>\operatorname{MISE} (\bold{H}) = \operatorname{AMISE} (\bold{H}) + o(n^{-1} |\bold{H}|^{-1/2} + \operatorname{tr} \, \bold{H}^2)</math>
where ''o'' indicates the usual [[big O notation|small o notation]]. Heuristically this statement implies that the AMISE is a 'good' approximation of the MISE as the sample size <
It can be shown that any reasonable bandwidth selector '''H''' has '''H''' = ''O''(''n''<sup>−2/(''d''+4)</sup>)
: <math>\bold{H}_{\operatorname{AMISE}} = \operatorname{argmin}_{\bold{H} \in F} \, \operatorname{AMISE} (\bold{H}).</math>
Line 80:
Silverman's rule of thumb suggests using <math>\sqrt{\mathbf{H}_{ii}} = \left(\frac{4}{d+2}\right)^{\frac{1}{d+4}} n^{\frac{-1}{d+4}} \sigma_i</math> where <math>\sigma_i</math> is the standard deviation of the ith variable and <math>\mathbf{H}_{ij} = 0, i\neq j</math>. Scott's rule is <math>\sqrt{\mathbf{H}_{ii}} = n^{\frac{-1}{d+4}} \sigma_i</math>.
==Asymptotic analysis==
|