Common integrals in quantum field theory: Difference between revisions

Content deleted Content added
Corrected the sign in the term in the discriminant. Added supporting mathematical steps.
Line 123:
 
:<math>( a - \lambda)( b-\lambda) -c^2 = 0 </math>
:<math>\lambda^2 - \lambda(a+b) + ab -c^2 = 0 </math>
 
which are found using the [[quadratic equation]]:
which are
:<math> \lambda_{\pm} = {1\over 2} ( a+b) \pm {1\over 2}\sqrt{(a+b)^2-4(ab - c^2)}. </math>
 
:<math> \lambda_{\pm} = {1\over 2} ( a+b) \pm {1\over 2}\sqrt{(a^2 +2ab + b)^2 -4ab + 4c^2}. </math>
:<math> \lambda_{\pm} = {1\over 2} ( a+b) \pm {1\over 2}\sqrt{(a-b)^2+4c^2}. </math>
 
=====Eigenvectors of ''A''=====