Radial distribution function: Difference between revisions

Content deleted Content added
The structure factor: added clarity about the intention of obtaining an averaged observable
Tags: Mobile edit Mobile web edit
No edit summary
Tags: Mobile edit Mobile web edit
Line 54:
We can formally count these particles via <math> \sum_{i \neq 0} \delta ( \mathbf{r} - \mathbf{r}_i) </math>.
 
Taking the average we arrive at the expression <math>\textstyle \mathrm{d} n (\mathbf{r}) = \langle \sum_{i \neq 0} \delta ( \mathbf{r} - \mathbf{r}_i) \rangle</math>, with <math>\textstyle \langle \cdot \rangle</math> the ensemble average, yielding:
 
{{NumBlk|:| <math>g(\mathbf{r}) = \frac{1}{\rho} \langle \sum_{i \neq 0} \delta ( \mathbf{r} - \mathbf{r}_i) \rangle = V \frac{N-1}{N} \left \langle \delta ( \mathbf{r} - \mathbf{r}_1) \right \rangle</math>|{{EquationRef|5}}}}