Content deleted Content added
Link to "congruence" |
m BOT - Unicodifying |
||
Line 4:
:'''Input''' Integers ''p'', ''g'', ''e''.
:'''Output''' Integer ''x'', such that ''e
:#Use [[Euler's totient function]] to determine the prime factorization of the order of the group : <br><center><math>\varphi(p)= p_0\cdot p_1 \cdot \ldots \cdot p_n</math></center>
Line 12:
& \equiv & (g^{\varphi(p)/p_1})^{b_1} \pmod{p}
\end{matrix}
</math> (using [[Euler's theorem]])</center><br>Note that if <math>g^{\varphi(p)/p_1} \equiv 1 \pmod{p}</math> then the order of ''g'' is less than
:#We end up with enough simultaneous [[congruence|congruences]] so that ''x'' can be solved using the [[Chinese remainder theorem]].
|