Content deleted Content added
Line 72:
===Estimations===
Corrugated fiberboard can be evaluated by many material test methods including an [[Edge crush test|Edge Crush Test]] (ECT). There have been efforts to estimate the peak compression strength of a box (usually empty, regular singelwall slotted containers, top-to-bottom) based on various board properties. Some have involved [[finite element analysis]].<ref>{{cite journal |last=Urbanik|first=T J|authorlink= |date=July 1981 |title=Effect of paperboard stress strain characteristics on strength of singlewall corrugated boxes|journal=US Forest Products Laboratory Report|volume=401 |issue= |series=FPL|pages= |id=|url= |accessdate= |quote= }}</ref> One of the commonly referenced [[empirical]] estimations was published by [[Edge crush test|McKee]] in 1963.<ref>{{cite journal |last=McKee|first=R C|authorlink= |author2=Gander, Wachuta |date=August 1963 |title=Compression strength formula for corrugated boxes|journal=Paperboard Packaging |volume=48 |issue=8 |pages= |id=|url= |accessdate= |quote= }}</ref> This used the board ECT, the MD and CD flexural stiffness, the box perimeter, and the box depth. Simplifications have used a formula involving the board ECT, the board thickness, and the box perimeter. Most estimations do not relate well to other box orientations, box styles, or to filled boxes. [[Physical test]]ing of filled and closed boxes remains necessary.
===Calculating Compression requirement===
Fiber Box Association have a method for calculating the required compression losses which includes the following factors:
* Time
* Moisture
* Palletizing type
* Pallet patterns
* Pallet type
* Handling
A tool to make calculations easily found in Google Play: https://play.google.com/store/apps/details?id=com.apepuntocom.bctadsx
==Dynamic Compression==
|