Content deleted Content added
→top: clean up, added underlinked tag using AWB |
No edit summary |
||
Line 12:
Traditionally data scientists have not been part of IT development teams, like regular Java programmers. This is because their skills set them apart in their own department not normally related to IT, i.e., math, statistics, and data science. So it is logical to conclude that their approach to writing software code does not enjoy the same efficiencies as the traditional programming team. In particular traditional programming has adopted the Continuous Delivery approach to writing code and the agile methodology. That releases software in a continuous circle, called iterations.
Continuous analytics then is the extension of the continuous delivery software [https://www.oreilly.com/ideas/data-scientists-and-the-analytic-lifecycle development model] to the big data analytics development team. The goal of the continuous analytics practitioner then is to find ways to incorporate writing analytics code and installing big data software into the agile development model of automatically running unit and functional tests and building the environment system with automated tools.
To make this work means getting data scientists to write their code in the same code repository that regular programmers use so that software can pull it from there and run it through the build process. It also means saving the configuration of the big data cluster (sets of virtual machines) in some kind of repository as well. That facilitates sending out analytics code and big data software and objects in the same automated way as the continuous integration process.<ref>{{cite web|url=http://southernpacificreview.com/2016/05/17/continuous-analytics-defined/|title=Continuous Analytics Defined |website=Southern Pacific Review|publisher=Southern Pacific Review|accessdate=17 May 2016}}</ref><ref>{{cite web|last1=Pushkarev|first1=Stepan|title=Tear down the Wall between Data Science and DevOps|url=https://www.linkedin.com/pulse/tear-down-wall-between-data-science-devops-stepan-pushkarev?trk=prof-post|website=LinkedIN|publisher=LinkedIN|accessdate=17 May 2016}}</ref>
|