Content deleted Content added
No edit summary |
|||
Line 28:
==Calculating mean values using Dirichlet series==
In case
: <math>F(n)=\sum_{d \mid n} f(d),</math>
for some arithmetic function
: <math>\sum_{n \le x} F(n)=\sum_{d \le x} f(d) \sum_{n\le x, d\mid n} 1=\sum_{d \le x} f(d)[x/d] = x\sum_{d \le x} \frac{f(d)}{d} \text{ } + O(\sum_{d \le x} |f(d)|).\qquad\qquad (1)</math>
Line 39:
===The density of the k-th power free integers in {{math|N}}===
For an integer
: <math>Q_k :=\{n \in \mathbb{Z}\mid n \text{ is not divisible by } d^k \text{ for any integer } d\ge 2\}.</math>
We calculate the [[natural density]] of these numbers in {{math|'''N'''}}, that is, the average value of [[indicator function|
The function ''δ'' is multiplicative, and since it is bounded by 1, its [[Dirichlet series]] converges absolutely in the half-plane Re(s)>1, and there has [[Euler product]]
|