Content deleted Content added
→Block matrix inversion: removed irrelevant duplication of Block_matrix#Block_matrix_inversion Tag: section blanking |
→Derivation: cleaned and added a reference |
||
Line 6:
:<math> [\mathbf A, \mathbf B], \qquad \mathbf A \in \reals^{m\times n}, \qquad \mathbf B \in \reals^{m\times p}, \qquad m \geq n+p.</math>
If the above matrix is full rank, the [[Moore–Penrose pseudoinverse]] matrices of it and its transpose are
:<math>
\begin{bmatrix}
Line 19:
^{+} = [\mathbf A, \mathbf B] ([\mathbf A, \mathbf B]^T [\mathbf A, \mathbf B])^{-1}.
</math>
To reduce computational costs to ''n''- and ''p''-square matrix inversions and to introduce parallelism, treating the blocks separately, one derives <ref name=Baksalary>{{cite journal|author=J.K. Baksalary and O.M. Baksalary|title=Particular formulae for the Moore–Penrose inverse of a columnwise partitioned matrix|journal=Linear Algebra Appl.|volume=421|date=2007|pages=16–23|doi=10.1016/j.laa.2006.03.031}}</ref>
:<math>
\begin{bmatrix}
\mathbf A, & \mathbf B
\end{bmatrix}
^{+} = ▼
^{+} = \left[\mathbf P_B^\perp \mathbf A( \mathbf A^T \mathbf P_B^\perp \mathbf A)^{-1}, \quad \mathbf P_A^\perp \mathbf B(\mathbf B^T \mathbf P_A^\perp \mathbf B)^{-1}\right]^T, ▼
\begin{bmatrix}▼
▲
\end{bmatrix}▼
\begin{bmatrix}▼
(\mathbf P_B^{\perp}\mathbf A)^{+}▼
\\
(\mathbf P_A^{\perp}\mathbf B)^{+} ▼
\end{bmatrix}, ▼
</math>
:<math>
Line 32 ⟶ 43:
\mathbf A^T \\ \mathbf B^T
\end{bmatrix}
^{+} = \left[\mathbf P_B^\perp \mathbf A( \mathbf A^T \mathbf P_B^\perp \mathbf A)^{-1}, \quad \mathbf P_A^\perp \mathbf B(\mathbf B^T \mathbf P_A^\perp \mathbf B)^{-1}\right]
= [(\mathbf A^T \mathbf P_B^{\perp})^{+}, ▼
</math>
where [[orthogonal projection]] matrices are defined by
Line 41 ⟶ 54:
</math>
▲\begin{bmatrix}
▲\end{bmatrix}
▲^{+}
▲=
▲\begin{bmatrix}
▲(\mathbf P_B^{\perp}\mathbf A)^{+}
▲\\
▲(\mathbf P_A^{\perp}\mathbf B)^{+}
▲\mathbf A^T \\ \mathbf B^T
▲\end{bmatrix}
▲= [(\mathbf A^T \mathbf P_B^{\perp})^{+},
▲\quad (\mathbf B^T \mathbf P_A^{\perp})^{+} ]. </math>
▲Note that the above formulae are not necessarily valid if <math>[\mathbf A, \mathbf B]</math> does not have full rank – for example, if <math>\mathbf A \neq 0</math>, then
:<math>
\begin{bmatrix}
|