Content deleted Content added
→top: fmt: non-itatlic 'T' for transpose (as per MoS), {{nowrap|}} |
|||
Line 66:
{{anchor|Drazin}}
{{expand section|clarify motivation for studying these|date=April 2015}}
A semigroup ''S'' with an involution * is called a '''*-regular semigroup''' (in the sense of Drazin) if for every ''x'' in ''S'', ''x''* is ''H''-equivalent to some inverse of ''x'', where ''H'' is the [[Green's relations|Green’s relation]] ''H''. This defining property can be formulated in several equivalent ways. Another is to say that every [[Green's relations#The L.2C R.2C and J relations|''L''-class]] contains a projection. An axiomatic definition is the condition that for every ''x'' in ''S'' there exists an element ''
In the [[Matrix multiplication|multiplicative]] semigroup ''M''<sub>''n''</sub>
==Free semigroup with involution ==
|