Content deleted Content added
→Angle solver: numbered equations |
→Angle solver: Romanjii |
||
Line 87:
The problem of computing the gyro angle setting is a trigonometry problem that is simplified by first considering the calculation of the deflection angle, which ignores torpedo ballistics and parallax.<ref name = Deflection>{{harvnb|COMSUBATL|1950|loc=§ "Definitions", p. 1-2}}</ref>
For small gyro angles, {{math|''θ''<sub>Gyro</sub> ≈ ''θ''<sub>Bearing</sub> − ''θ''<sub>Deflection</sub>}}. A direct application of the [[law of sines]] to Figure 3 produces Equation {{EquationNote|1}}.
{{NumBlk|:|<math>\frac{\left \Vert v_{\mathrm{Target}} \right \| }{ \sin(\theta_{\mathrm{Deflection}}) } = \frac{\left \Vert v_{\mathrm{Torpedo}} \right \| }{ \sin(\theta_{\mathrm{Bow}}) } </math>|{{EquationRef|1}}}}
where
:{{math|''v''<sub>Target</sub>}} is the velocity of the target.
Line 97:
Equation {{EquationNote|1}} is frequently modified to substitute track angle for deflection angle (track angle is defined in Figure 2, {{math|1=''θ''<sub>Track</sub>=''θ''<sub>Bow</sub>+''θ''<sub>Deflection</sub>}}). This modification is illustrated with Equation {{EquationNote|2}}.
{{NumBlk|:|<math>\frac{\left \Vert v_{\mathrm{Target}} \right \| }{ \sin(\theta_{\mathrm{Deflection}}) } = \frac{\left \Vert v_{\mathrm{Torpedo}} \right \| }{ \sin(\theta_{\mathrm{Track}}-\theta_{\mathrm{Deflection}})}</math>|{{EquationRef|2}}}}
where
{{math|''θ''<sub>Track</sub>}} is the angle between the target ship's course and the torpedo's course.
|