Circular segment: Difference between revisions

Content deleted Content added
ext links
Line 25:
The area of the circular sector is&nbsp;<math>\pi R^2 \cdot \frac{\theta}{2\pi} = R^2\left(\frac{\theta}{2}\right)</math>
 
[[Image:Circle cos.jpg|right|260px]]
If we bisect angle <math>\theta</math>, and thus the triangular portion, we will get two triangles with the area <math>\frac{1}{2} R\sin \frac{\theta}{2} R\cos \frac{\theta}{2}</math> or
<math>2\cdot\frac{1}{2}R\sin\frac{\theta}{2} R\cos\frac{\theta}{2}</math>