Content deleted Content added
Undid revision 756936983 by 86.138.203.45 (talk) |
|||
Line 26:
\psi^{(n)}(x)&=\psi(n,x) \qquad n\in\mathbb{N} \\[8px]
\Gamma(x)&=\exp\left( \psi(-1,x)+\tfrac12 \ln 2\pi \right)\\[8px]
\zeta(z,q)&=\frac{\Gamma (1-z)}{\ln 2} \left(2^{-z} \psi \left(z-1,\
\zeta'(-1,x)&=\psi(-2, x) + \frac{x^2}2 - \frac{x}2 + \frac1{12} \\[8px]
B_n(q) &= -\frac{\Gamma (n+1)}{\ln 2} \left(2^{n-1} \psi\left(-n,\
\end{align}</math>
|