Content deleted Content added
Salzahrani (talk | contribs) |
m Use proper norm symbol || |
||
Line 3:
The RBF kernel on two samples '''x''' and '''x'''', represented as feature vectors in some ''input space'', is defined as<ref name="primer">Jean-Philippe Vert, Koji Tsuda, and Bernhard Schölkopf (2004). [http://cbio.ensmp.fr/~jvert/publi/04kmcbbook/kernelprimer.pdf "A primer on kernel methods".] ''Kernel Methods in Computational Biology''.</ref>
:<math>K(\mathbf{x}, \mathbf{x'}) = \exp\left(-\frac{
<math>\textstyle
:<math>K(\mathbf{x}, \mathbf{x'}) = \exp(-\gamma
Since the value of the RBF kernel decreases with distance and ranges between zero (in the limit) and one (when {{math|'''x''' {{=}} '''x''''}}), it has a ready interpretation as a [[similarity measure]].<ref name="primer"/>
Line 21:
:<math>
\begin{alignat}{2}
\exp\left(-\frac{1}{2}
&= \sum_{j=0}^\infty \frac{(\mathbf{x}^\top \mathbf{x'})^j}{j!} \exp\left(-\frac{1}{2}
&= \sum_{j=0}^\infty \sum_{\sum n_i=j}
\exp\left(-\frac{1}{2}
\frac{x_1^{n_1}\cdots x_k^{n_k} }{\sqrt{n_1! \cdots n_k! }}
\exp\left(-\frac{1}{2}
\frac{{x'}_1^{n_1}\cdots {x'}_k^{n_k} }{\sqrt{n_1! \cdots n_k! }}
\end{alignat}
|