Content deleted Content added
m Dating maintenance tags: {{Citation needed}} |
maximal operator is sublinear, which is stronger that quasilinear |
||
Line 69:
Hence [[Parseval's theorem]] easily shows that the Hilbert transform is bounded from <math>L^2</math> to <math>L^2</math>. A much less obvious fact is that it is bounded from <math>L^1</math> to <math>L^{1,w}</math>. Hence Marcinkiewicz's theorem shows that it is bounded from <math>L^p</math> to <math>L^p</math> for any 1 < ''p'' < 2. [[dual space|Duality]] arguments show that it is also bounded for 2 < ''p'' < ∞. In fact, the Hilbert transform is really unbounded for ''p'' equal to 1 or ∞.
Another famous example is the [[Hardy–Littlewood maximal function]], which is only
==History==
|