Content deleted Content added
m →Sequence clustering algorithms and packages: clean up; HTTP→HTTPS for Github using AWB |
No edit summary |
||
Line 23:
* [[UCLUST]] in USEARCH<ref name=usearch/>
* CD-HIT<ref name=cdhit/>
* Linclust: clustering protein sequences in linear time<ref>{{Cite journal|last=Steinegger|first=Martin|last2=Soeding|first2=Johannes|date=2017-01-29|title=Linclust: clustering protein sequences in linear time|url=http://www.biorxiv.org/content/early/2017/01/29/104034|biorxiv=104034|doi=10.1101/104034}}</ref>
* nrdb90.pl<ref name=rdb90>{{cite journal|pmid=9682055
|journal=Bioinformatics
Line 32 ⟶ 33:
|doi=10.1093/bioinformatics/14.5.423
}}</ref>
* MMseqs: software suite for fast and deep clustering of large protein sequence sets <ref>{{cite journal
|title=MMseqs software suite for fast and deep clustering and searching of large protein sequence sets
|author1=Hauser M. |author2=Steinegger M. |author3=Söding J. |journal=Bioinformatics.
|date=Jan 2016 |volume=32
|issue=9 |pages=1323-1330
|doi=10.1093/bioinformatics/btw006
|pmid= 26743509}}</ref>
* TribeMCL: a method for clustering proteins into related groups<ref>{{cite journal
|title=An efficient algorithm for large-scale detection of protein families.
Line 68 ⟶ 76:
* RDB90<ref name=rdb90/>
* UniRef: A non-redundant [[UniProt]] sequence database<ref>{{cite web|url=http://www.uniprot.org/database/DBDescription.shtml#uniref|title=About UniProt|work=uniprot.org}}</ref>
* Uniclust: A clustered UniProtKB sequences at the level of 90%, 50% and 30% pairwise sequence identity. <ref>{{cite journal
|title=Uniclust databases of clustered and deeply annotated protein sequences and alignments
|author1=Mirdita M |author2=von den Drisch L. |author3=Galiez C.|author4=Soeding J. |author4=Steinegger M. |journal=Nucl Acids Res
|date=Nov 2016 |volume=45
|issue=D1 |pages=D170–D176
|doi=10.1093/nar/gkw1081}}</ref>
==See also==
|