Dynamic unobserved effects model: Difference between revisions

Content deleted Content added
m extra paren
Line 14:
There are several [[Maximum likelihood|MLE]]-based approaches to estimate ''δ'' and ''ρ'' consistently. The simplest way is to treat ''y<sub>i,0</sub>'' as non-stochastic and assume ''c<sub>i</sub>'' is [[Independent variable#Use in statistics|independent]] with ''z<sub>i</sub>''. Then integrate ''P(y<sub>i,t</sub> , y<sub>i,t-1</sub> , … , y<sub>i,1</sub> | y<sub>i,0</sub> , z<sub>i</sub> , c<sub>i</sub>)'' against the density of ''c<sub>i</sub>'', we can obtain the conditional density P(y<sub>i,t</sub> , y<sub>i,t-1</sub> , … , y<sub>i,1</sub> |y<sub>i,0</sub> , z<sub>i</sub>). The objective function for the conditional MLE can be represented as: ''<math> \sum_{i=1}^N </math> log (P (y<sub>i,t</sub> , y<sub>i,t-1</sub>, … , y<sub>i,1</sub> | y<sub>i,0</sub> , z<sub>i</sub>)).''
 
Treating ''y<sub>i,0</sub>'' as non-stochastic implicitly assumes the independence of ''y<sub>i,0</sub>'' on ''z<sub>i</sub>''. But in most of the cases in reality, ''y<sub>i,0</sub>'' depends on ''c<sub>i</sub>'' and ''c<sub>i</sub>'' also depends on ''z<sub>i</sub>''. An improvement on the approach above is to assume a density of ''y<sub>i,0</sub>'' conditional on (''c<sub>i</sub>, z<sub>i</sub>'') and conditional likelihood ''P(y<sub>i,t</sub>) , y<sub>i,t-1</sub> , … , y<sub>t,1</sub>,y<sub>i,0</sub> | c<sub>i</sub>, z<sub>i</sub>)'' can be obtained. Integrate this likelihood against the density of ''c<sub>i</sub>'' conditional on ''z<sub>i</sub>'' and we can obtain the conditional density ''P(y<sub>i,t</sub> , y<sub>i,t-1</sub> , … , y<sub>i,1</sub> , y<sub>i,0</sub> | z<sub>i</sub>)''. The objective function for the [[conditional MLE]] <ref>Greene, W. H. (2003), Econometric Analysis , Prentice Hall , Upper Saddle River, NJ .</ref> is ''<math> \sum_{i=1}^N </math> log (P (y<sub>i,t</sub> , y<sub>i,t-1</sub>, … , y<sub>i,1</sub> | y<sub>i,0</sub> , z<sub>i</sub>)).''
 
Based on the estimates for (''δ, ρ'') and the corresponding variance, test about the coefficients can be implemented <ref>Whitney K. Newey, Daniel McFadden, Chapter 36 Large sample estimation and hypothesis testing, In: Robert F. Engle and Daniel L. McFadden, Editor(s), Handbook of Econometrics, Elsevier, 1994, Volume 4, Pages 2111–2245, {{ISSN|1573-4412}}, ISBN 9780444887665,</ref> and the average partial effect can be calculated.<ref>Chamberlain, G. (1980), “Analysis of Covariance with Qualitative Data,” Journal of Econometrics 18, 5–46</ref>