Content deleted Content added
No edit summary |
No edit summary |
||
Line 3:
== Definition ==
Given a [[Lattice (group)|lattice]] <math>L\subset\mathbb{Z}^
:<math>C=\{ \lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_1,\ldots,\lambda_n \geq 0, \lambda_1,\ldots,\lambda_n \in\mathbb{R}\}\subset\mathbb{R}^d</math>
we consider the [[monoid]] <math>C\cap L</math>. By [[Gordan's lemma]] this monoid is finetely generated, i.e., there exists a finite set of lattice points <math>\{x_1,\ldots,x_m\}\subset C\cap L</math> such that every lattice point <math>x\in C\cap L</math> is an integer conical combination of these points:
|