Content deleted Content added
No edit summary |
|||
Line 23:
=== Functional linear models with functional response ===
For a
<math display="block">Y(s) = \beta_0(s) + \int_{\mathcal{T}_X} \beta(s,t) X^c(t)dt + \epsilon(s)</math>
where <math>s\in\mathcal{T}_Y</math>, <math>t\in\mathcal{T}_X</math>, <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\epsilon(\cdot)</math> is usually assumed to be a Gaussian process with mean zero. In this case, at any given time <math>s\in\mathcal{T}_Y</math>, the value of <math>Y</math>, i.e. <math>Y(s)</math>, depends on the entire trajectory of <math>X</math>. This model, for any given time <math>s</math>, is an extension of the traditional multivariate linear regression model by simply replacing the inner product in Euclidean space by that in <math>L^2</math> space.
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{T}_X\times\mathcal{T}_X)</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2\times L^2 \rightarrow L^2\times L^2</math> is defined as <math>(R_{XX}\beta)(s,t) = \int r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,t) = \text{cov}(X(s),X(t))</math>.
In particular, taking <math>X(\cdot)</math> as a constant function gives a special case of this model
<math display="block">Y(s) = \sum_{j=1}^p X_j \beta_j(s) + \epsilon(s)</math>
Line 35:
Assuming that <math>\mathcal{T}_X = \mathcal{T}_Y := \mathcal{T}</math>, another model called varying-coefficient model is of the form
<math display="block">Y(s) = \alpha_0(s) + \alpha(s)X(s)+\epsilon(s)</math>
Note that this model assumes the value of <math>Y</math> at time <math>s</math>, i.e. <math>Y(s)</math>, only depends on that of <math>X</math> at the same time, <math>X(s)</math>, and thus is a concurrent regression model.
== Functional nonlinear models ==
|