Content deleted Content added
No edit summary |
|||
Line 1:
{{User sandbox}}
<!-- EDIT BELOW THIS LINE -->
'''Functional regression''' is a version of [[Regression analysis|regression analysis]] when [[Dependent and independent variables|responses]] or [[Dependent and independent variables|covariates]] include [[Functional data analysis|functional data]].
__TOC__
Line 20:
Adding multiple functional and scalar covariates, model ({{EquationNote|2}}) can be extended to
{{NumBlk|::|<math display="block">Y = \sum_{k=1}^q Z_k\alpha_k + \sum_{j=1}^p \int_{\mathcal{T}_j} X_j^c(t) \beta_j(t) dt + \epsilon,</math>|{{EquationRef|3}}}}
where <math>Z_1,\cdots,Z_q</math> are scalar covariates with <math>Z_1=1</math>, <math>\alpha_1,\cdots,\alpha_q</math> are
=== Functional linear models with functional responses ===
Line 52:
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)dt, \cdots, \int_{\mathcal{T}} X^c(t) \beta_p(t)dt \right) + \epsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[Curse of dimensionality|curse of dimensionality]]. With <math>p>1</math> and relatively small sample sizes, the estimator given by this model often has large variance<ref name=chen:11>Chen, Hall and Müller (2011). "Single and multiple index functional regression models with nonparametric link". ''The Annals of Statistics''. '''39''' (3):1720–1747. [[Digital object identifier|doi]]:[http://doi.org/10.1214/11-AOS882 10.1214/11-AOS882].</ref>. An alternative <math>p</math>-component functional multiple index model can be expressed as
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)dt \right) + \epsilon.</math>
Estimation methods for functional single and multiple index models are available<ref name=chen:11/><ref>Jiang and Wang (2011). "Functional single index models for longitudinal data". '''39''' (1):362–388. [[Digital object identifier|doi]]:[http://doi.org/10.1214/10-AOS845 10.1214/10-AOS845].</ref>.
|