Continuous quantum computation: Difference between revisions

Content deleted Content added
add inline citations under "Applications"
References: rm duplicates
Line 32:
*Heinrich, S. (2004), Quantum Approximation I. Embeddings of Finite Dimensional <math>L_p</math> Spaces, J. Complexity, 20, 5–26. Also [https://arXiv.org/abs/quant-ph/0305030 arXiv:quant-ph/0305030].
*Heinrich, S. (2004), Quantum Approximation II. Sobolev Embeddings, J. Complexity, 20, 27–45. Also [https://arXiv.org/abs/quant-ph/0305031 arXiv:quant-ph/0305031].
*Jaksch, P. and Papageorgiou, A. (2003), Eigenvector approximation leading to exponential speedup of quantum eigenvalue calculation, Phys. Rev. Lett., 91, 257902. Also [https://arXiv.org/abs/quant-ph/0308016 arXiv:quant-ph/0308016].
*Kacewicz, B. Z. (2005), Randomized and quantum solution of initial value problems, J. Complexity, 21, 740–756.
*Kwas, M., Complexity of multivariate Feynman–Kac Path Integration in Randomized and Quantum settings, 2004. Also [https://arXiv.org/abs/quant-ph/0410134 arXiv:quant-ph/0410134].
*Novak, E. (2001), Quantum complexity of integration, J. Complexity, 17, 2–16. Also [https://arXiv.org/abs/quant-ph/0008124 arXiv:quant-ph/0008124].
*Novak, E., Sloan, I. H., and Woźniakowski, H., Tractability of Approximation for Weighted Korobov Spaces on Classical and Quantum Computers, J. Foundations of Computational Mathematics, 4, 121-156, 2004. Also [https://arXiv.org/abs/quant-ph/0206023 arXiv:quant-ph/0206023]
*Papageorgiou, A. and Woźniakowski, H. (2005), Classical and Quantum Complexity of the Sturm–Liouville Eigenvalue Problem, Quantum Information Processing, 4(2), 87–127. Also [https://arXiv.org/abs/quant-ph/0502054 arXiv:quant-ph/0502054].
*Papageorgiou, A. and Woźniakowski, H. (2007), The Sturm–Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries, Quantum Information Processing, 6(2), 101–120. Also [https://arXiv.org/abs/quant-ph/0504194 arXiv:quant-ph/0504194].
 
{{Reflist}}