Local binary patterns: Difference between revisions

Content deleted Content added
BG19bot (talk | contribs)
m WP:CHECKWIKI error fix for #61. Punctuation goes before References. Do general fixes if a problem exists. -
Line 15:
The feature vector can now be processed using the [[Support vector machine]] or some other machine-learning algorithm to classify images. Such classifiers can be used for face recognition or texture analysis.
 
A useful extension to the original operator is the so-called uniform pattern[8], which can be used to reduce the length of the feature vector and implement a simple rotation invariant descriptor. This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000(2 transitions) is a uniform pattern, 01010100(6 transitions) is not. In the computation of the LBP histogram, the histogram has a separate bin for every uniform pattern, and all non-uniform patterns are assigned to a single bin. Using uniform patterns, the length of the feature vector for a single cell reduces from 256 to 59. The 58 uniform binary patterns correspond to the integers 0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 129, 131, 135, 143, 159, 191, 192, 193, 195, 199, 207, 223, 224, 225, 227, 231, 239, 240, 241, 243, 247, 248, 249, 251, 252, 253, 254 and 255.
 
==Extensions==