Content deleted Content added
remove copyright content copied from https://arxiv.org/pdf/0710.0053.pdf |
|||
Line 1:
{{Orphan|date=May 2017}}
'''Quantum image processing''' (QIMP) is primarily devoted to using quantum computing to create and work with quantum images.<ref name="Iliyasu Towards 2013">{{cite journal |title=Towards realising secure and efficient image and video processing applications on quantum computers |journal=Entropy |volume=15 |issue=8 |pages=
==Background==
Vlasov’s work<ref name="Vlasov Quantum 2003">{{cite journal |title=Quantum computations and images recognition |arxiv=quant-ph/9703010 |year=2003 |last1=Vlasov |first1=A.Y.}}</ref> in 1997 focused on the use of a quantum system to recognize orthogonal images. This was followed by efforts using quantum algorithms to search specific patterns in binary images<ref name="Schutzhold Pattern 2003">{{cite journal |title=Pattern recognition on a quantum computer |journal=Physical Review A |volume=67 |issue=6 |pages=062311 |year=2003 |last1=Schutzhold |first1=R.}}</ref> and detect the posture of certain targets.<ref name="Beach Quantum 2003">{{cite journal |title=Quantum image processing (QuIP) |journal=Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop |pages=
Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups:<ref name="Yan Quantum 2017"/>
#Quantum-assisted digital image processing (QDIP): These applications aim at improving digital or classical image processing tasks and applications.<ref name="Iliyasu Towards 2013"/>
#Optics-based quantum imaging (OQI)<ref name="Pittman Optical 1995">{{cite journal |title=Quantum imaging|journal= Progress in Optics |volume=51 |issue=7 |pages=
#Classically-inspired quantum image processing (QIMP)<ref name="Iliyasu Towards 2013"/>
==Quantum image manipulations==
A lot of the effort in QIP has been focused on designing algorithms to manipulate the position and color information encoded using the FRQI and its many variants. For instance, FRQI-based fast geometric transformations including (two-point) swapping, flip, (orthogonal) rotations<ref name="Le Fast 2010">{{cite journal |title= Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state |journal= IAENG International Journal of Applied Mathematics |volume=40 |issue=3 |pages=113–123 |year=2010 |last1=Le |first1=P. |last2=Iliyasu |first2=A. |last3= Dong |first3=F. |last4= Hirota |first4=K. }}</ref> and restricted geometric transformations to constrain these operations to a specified area of an image<ref name="Le Strategies 2011">{{cite journal |title= Strategies for designing geometric transformations on quantum images |journal= Theoretical Computer Science |volume=412 |issue=15 |pages=1406–1418 |year=2011 |last1=Le |first1=P. |last2=Iliyasu |first2=A. |last3= Dong |first3=F. |last4= Hirota |first4=K. }}</ref> were initially proposed. Recently, NEQR-based quantum image translation to map the position of each picture element in an input image into a new position in an output image<ref name="Wang Quantum 2015">{{cite journal |title= Quantum image translation |journal= Quantum Information Processing |volume=14 |issue=5 |pages=1589–1604 |year=2015 |last1=Wang |first1=J. |last2=Jiang |first2=N. |last3= Wang |first3=L. }}</ref> and quantum image scaling to resize a quantum image<ref name="Jiang Quantum 2015">{{cite journal |title= Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio |journal= Quantum Information Processing |volume=14 |issue=11 |pages=
To illustrate the feasibility and capability of QIP algorithms and application, researchers always prefer to simulate the digital image processing tasks on the basis of the QIRs that we already have. By using the basic quantum gates and the aforementioned operations, so far, researchers have contributed to quantum image feature extraction,<ref name="Zhang Local 2015">{{cite journal |title= Local feature point extraction for quantum images |journal= Quantum Information Processing |volume=14 |issue=5 |pages=1573–1588 |year=2015 |last1=Zhang |first1=Y. |last2=Lu |first2=K. |last3= Xu |first3=K. |last4= Gao |first4=Y. |last5= Wilson |first5=R. }}</ref> quantum image segmentation,<ref name="Caraiman Histogram 2014">{{cite journal |title= Histogram-based segmentation of quantum images |journal= Theoretical Computer Science |volume=529 |pages=46–60 |year=2014 |last1=Caraiman |first1=S. |last2=Manta |first2=V. }}</ref> quantum image morphology,<ref name="Yuan Quantum 2015">{{cite journal |title= Quantum morphology operations based on quantum representation model |journal= Quantum Information Processing |volume=14 |issue=5 |pages=1625–1645 |year=2015 |last1=Yuan |first1=S. |last2=Mao |first2=X. |last3= Li |first3=T. |last4= Xue |first4=Y. |last5= Chen |first5=L. |last6= Xiong |first6=Q.}}</ref> quantum image comparison,<ref name="Yan A 2013">{{cite journal |title= A parallel comparison of multiple pairs of images on quantum computers |journal= International Journal of Innovative Computing and Applications |volume=5 |issue=4 |pages=199–212 |year=2013 |last1=Yan |first1=F. |last2=Iliyasu |first2=A. |last3= Le |first3=P. |last4= Sun |first4=B. |last5= Dong |first5=F. |last6= Hirota |first6=K.}}</ref> quantum image filtering,<ref name="Caraiman Quantum 2013">{{cite journal |title= Quantum image filtering in the frequency ___domain |journal= Advances in Electrical and Computer Engineering |volume=13 |issue=3 |pages=
In general, the work pursued by the researchers in this area are focused on expanding the applicability of QIMP to realize more classical-like digital image processing algorithms; propose technologies to physically realize the QIMP hardware; or simply to note the likely challenges that could impede the realization of some QIMP protocols.
==References==
{{Reflist}}
[[Category:Computer science]]
|