Content deleted Content added
No edit summary |
m v1.42b - WP:WCW project (Link equal to linktext) |
||
Line 1:
'''Functional regression''' is a version of [[
__TOC__
Line 6:
Functional linear models (FLMs) are an extension of [[Linear regression|linear models]] (LMs). A linear model with scalar response <math>Y\in\mathbb{R}</math> and scalar covariates <math>X\in\mathbb{R}^p</math> can be written as
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X,\beta\rangle + \varepsilon,</math>|{{EquationRef|1}}}}
where <math>\langle\cdot,\cdot\rangle</math> denotes the [[Inner product space|inner product]] in [[
=== Functional linear models with scalar responses ===
Functional linear models with scalar responses can be obtained by replacing the scalar covariates <math>X</math> and the coefficient vector <math>\beta</math> in model ({{EquationNote|1}}) by a centered functional covariate <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> and a coefficient function <math>\beta = \beta(\cdot)</math> with [[Domain of a function|___domain]] <math>\mathcal{T}</math>, respectively, and replacing the inner product in Euclidean space by that in [[Hilbert space]] [[Lp space|<math>L^2</math>]],
{{NumBlk|::|<math display="block">Y = \beta_0 + \langle X^c, \beta\rangle +\varepsilon = \beta_0 + \int_\mathcal{T} X^c(t)\beta(t)\,dt + \varepsilon,</math>|{{EquationRef|2}}}}
where <math>\langle \cdot, \cdot \rangle</math> here denotes the inner product in <math>L^2</math>. One approach to estimating <math>\beta_0</math> and <math>\beta(\cdot)</math> is to expand the centered covariate <math>X^c(\cdot)</math> and the coefficient function <math>\beta(\cdot)</math> in the same [[Basis function|functional basis]], for example, [[
<math display="block">Y = \beta_0 + \sum_{k=1}^\infty \beta_k x_k +\varepsilon.</math>
For implementation, regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization.<ref name=morr:15>Morris (2015). "Functional regression". ''Annual Review of Statistics and Its Application''. '''2''':321–359. [[Digital object identifier|doi]]:[http://doi.org/10.1146/annurev-statistics-010814-020413 10.1146/annurev-statistics-010814-020413].</ref>. In addition, a [[
<br />
Line 23:
For a functional response <math>Y(\cdot)</math> with ___domain <math>\mathcal{T}</math> and a functional covariate <math>X(\cdot)</math> with ___domain <math>\mathcal{S}</math>, two FLMs regressing <math>Y(\cdot)</math> on <math>X(\cdot)</math> have been considered<ref name=wang:16/><ref>Ramsay and [[Bernard Silverman|Silverman]] (2005). ''Functional data analysis'', 2nd ed., New York : Springer, [[Special:BookSources/038740080X|ISBN 0-387-40080-X]].</ref>. One of these two models is of the form
{{NumBlk|::|<math display="block">Y(t) = \beta_0(t) + \int_{\mathcal{S}} \beta(s,t) X^c(s)\,ds + \varepsilon(t),\ \text{for}\ t\in\mathcal{T},</math>|{{EquationRef|4}}}}
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is still the centered functional covariate, <math>\beta_0(\cdot)</math> and <math>\beta(\cdot,\cdot)</math> are coefficient functions, and <math>\varepsilon(\cdot)</math> is usually assumed to be a random process with mean zero and finite variance. In this case, at any given time <math>t\in\mathcal{T}</math>, the value of <math>Y</math>, i.e., <math>Y(t)</math>, depends on the entire trajectory of <math>X</math>. Model ({{EquationNote|4}}), for any given time <math>t</math>, is an extension of [[
<math display="block">r_{XY} = R_{XX}\beta, \text{ for } \beta\in L^2(\mathcal{S}\times\mathcal{S}),</math>
where <math>r_{XY}(s,t) = \text{cov}(X(s),Y(t))</math>, <math>R_{XX}: L^2(\mathcal{S}\times\mathcal{S}) \rightarrow L^2(\mathcal{S}\times\mathcal{T})</math> is defined as <math>(R_{XX}\beta)(s,t) = \int_\mathcal{S} r_{XX}(s,w)\beta(w,t)dw</math> with <math>r_{XX}(s,w) = \text{cov}(X(s),X(w))</math> for <math>s,w\in\mathcal{S}</math><ref name=wang:16/>. Regularization is needed and can be done through truncation, <math>L^2</math> penalization or <math>L^1</math> penalization<ref name=morr:15/>. Various estimation methods for model ({{EquationNote|4}}) are available<ref>Ramsay and Dalzell (1991). "Some tools for functional data analysis". ''Journal of the Royal Statistical Society. Series B (Methodological)''. '''53''' (3):539–572. http://www.jstor.org/stable/2345586.</ref><ref>Yao, Müller and Wang (2005). "Functional linear regression analysis for longitudinal data". ''The Annals of Statistics''. '''33''' (6):2873–2903. [[Digital object identifier|doi]]:[http://doi.org/10.1214/009053605000000660 10.1214/009053605000000660].</ref>.<br />
Line 43:
== Functional nonlinear models ==
=== Functional polynomial models ===
Functional polynomial models are an extension of the FLMs with scalar responses, analogous to extending linear regression to [[
<math display="block">Y = \alpha + \int_\mathcal{T}\beta(t)X^c(t)\,dt + \int_\mathcal{T} \int_\mathcal{T} \gamma(s,t) X^c(s)X^c(t) \,ds\,dt + \varepsilon,</math>
where <math>X^c(\cdot) = X(\cdot) - \mathbb{E}(X(\cdot))</math> is the centered functional covariate, <math>\alpha</math> is a scalar coefficient, <math>\beta(\cdot)</math> and <math>\gamma(\cdot,\cdot)</math> are coefficient functions with domains <math>\mathcal{T}</math> and <math>\mathcal{T}\times\mathcal{T}</math>, respectively, and <math>\varepsilon</math> is a random error with mean zero and finite variance. By analogy to FLMs with scalar responses, estimation of functional polynomial models can be obtained through expanding both the centered covariate <math>X^c</math> and the coefficient functions <math>\beta</math> and <math>\gamma</math> in an orthonormal basis.<ref name=yao:10/>
Line 50:
A functional multiple index model is given by
<math display="block">Y = g\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt, \ldots, \int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Taking <math>p=1</math> yields a functional single index model. However, for <math>p>1</math>, this model is problematic due to [[
<math display="block">Y = g_1\left(\int_{\mathcal{T}} X^c(t) \beta_1(t)\,dt\right)+ \cdots+ g_p\left(\int_{\mathcal{T}} X^c(t) \beta_p(t)\,dt \right) + \varepsilon.</math>
Estimation methods for functional single and multiple index models are available<ref name=chen:11/><ref>Jiang and Wang (2011). "Functional single index models for longitudinal data". '''39''' (1):362–388. [[Digital object identifier|doi]]:[http://doi.org/10.1214/10-AOS845 10.1214/10-AOS845].</ref>.
Line 64:
== Extensions ==
A direct extension of FLMs with scalar responses shown in model ({{EquationNote|2}}) is to add a link function to create a [[
# Linear predictor <math>\eta = \beta_0 + \int_{\mathcal{T}} X^c(t)\beta(t)\,dt</math>;
# [[Variance function]] <math>\text{Var}(Y|X) = V(\mu)</math>, where <math>\mu = \mathbb{E}(Y|X)</math> is the [[Conditional expectation|conditional mean]];
Line 70:
== See also ==
* [[Functional data analysis
* [[Functional ▲* [[Karhunen–Loève_theorem|Karhunen–Loève theorem]]
▲* [[Generalized functional linear model|Generalized functional linear model]]
▲* [[Stochastic processes|Stochastic processes]]
== References ==
|