Exponential-logarithmic distribution: Difference between revisions

Content deleted Content added
removed parent category of Category:Continuous distributions
m Replace magic links with templates per local RfC and MediaWiki RfC
Line 105:
==Related distributions==
The EL distribution has been generalized to form the Weibull-logarithmic distribution.<ref>Ciumara1,Roxana; Preda2, Vasile (2009) [http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/PDF/16_sec_081_Ciumara_The_Weibull.pdf "The Weibull-logarithmic distribution in lifetime analysis and its properties"]. In: L. Sakalauskas, C. Skiadas and
E. K. Zavadskas (Eds.) [http://www.vgtu.lt/leidiniai/leidykla/ASMDA_2009/ ''Applied Stochastic Models and Data Analysis''], The XIII International Conference, Selected papers. Vilnius, 2009 {{ISBN |978-9955-28-463-5}}</ref>
 
If ''X'' is defined to be the [[random variable]] which is the minimum of ''N'' independent realisations from an [[exponential distribution]] with rate paramerter ''&beta;'', and if ''N'' is a realisation from a [[logarithmic distribution]] (where the parameter ''p'' in the usual parameterisation is replaced by {{nowrap|1=(1&nbsp;&minus;&nbsp;''p'')}}), then ''X'' has the exponential-logarithmic distribution in the parameterisation used above.