Content deleted Content added
m →References: clean up, replaced: Proc. Nat. Acad → Proc. Natl. Acad using AWB |
m Spacing with ISBNs |
||
Line 263:
*[[Garrett Birkhoff|G. Birkhoff]] and O. Frink, ''Representations of lattices by sets'', Trans. Amer. Math. Soc. '''64''', no. 2 (1948), 299–316.
*S. Bulman-Fleming and K. McDowell, ''Flat semilattices'', Proc. Amer. Math. Soc. '''72''', no. 2 (1978), 228–232.
*K.P. Bogart, R. Freese, and J.P.S. Kung (editors), ''The Dilworth Theorems. Selected papers of Robert P. Dilworth'', Birkhäuser Verlag, Basel - Boston - Berlin, 1990. xxvi+465
*[[Hans Dobbertin|H. Dobbertin]], ''Refinement monoids, Vaught monoids, and Boolean algebras'', Math. Ann. '''265''', no. 4 (1983), 473–487.
*[[Hans Dobbertin|H. Dobbertin]], ''Vaught measures and their applications in lattice theory'', J. Pure Appl. Algebra '''43''', no. 1 (1986), 27–51.
Line 271:
*R. Freese, W.A. Lampe, and W. Taylor, ''Congruence lattices of algebras of fixed similarity type. I'', Pacific J. Math. '''82''' (1979), 59–68.
*N. Funayama and T. Nakayama, ''On the distributivity of a lattice of lattice congruences'', Proc. Imp. Acad. Tokyo '''18''' (1942), 553–554.
*K.R. Goodearl, von Neumann regular rings. Second edition. Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. xviii+412
*K.R. Goodearl and D. Handelman, ''Simple self-injective rings'', Comm. Algebra '''3''', no. 9 (1975), 797–834.
*K.R. Goodearl and D. Handelman, ''Tensor products of dimension groups and K<sub>0</sub> of unit-regular rings'', Canad. J. Math. '''38''', no. 3 (1986), 633–658.
*K.R. Goodearl and F. Wehrung, ''Representations of distributive semilattices in ideal lattices of various algebraic structures'', Algebra Universalis '''45''', no. 1 (2001), 71–102.
*G. Grätzer, General Lattice Theory. Second edition, new appendices by the author with B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A. Priestley, H. Rose, E.T. Schmidt, S.E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998. xx+663
*G. Grätzer, The Congruences of a Finite Lattice: a ''Proof-by-Picture'' Approach, Birkhäuser Boston, 2005. xxiii+281
*G. Grätzer, H. Lakser, and F. Wehrung, ''Congruence amalgamation of lattices'', Acta Sci. Math. (Szeged) '''66''' (2000), 339–358.
*G. Grätzer and E.T. Schmidt, ''On congruence lattices of lattices'', Acta Math. Sci. Hungar. '''13''' (1962), 179–185.
|